
It’s More Than DB2

Exploiting the Open Transaction Environment

Russ Evans

russevans@evansgroupconsulting.com

Copyright (c) 2012, The Evans Group, Inc. 2

Objectives

• History of Multithreading

• The Open Transaction Environment

• Making programs Threadsafe

• Exploiting the OTE

• OTE Performance Considerations

• Diagnosing Threadsafe Problems

• Recommendations

Copyright (c) 2012, The Evans Group, Inc. 3

History of Multithreading

• CICS as a Single TCB

– Most efficient on a uni-processor

– “Quasi-Reentrancy”

– Issues:

• Runaway tasks

• OS Waits = Region Wait

• Many restricted OS and COBOL Commands

• Limited by speed of one processor

Copyright (c) 2012, The Evans Group, Inc. 4

History of Multithreading

• CICS Exploiting Multiple Processors

– Multiple TCBs

– Primary TCB is “QR”, Quasi-Reentrant

– Additional TCBs for:

• VSAM

• DB2

• Program Loader

• etc.

Copyright (c) 2012, The Evans Group, Inc. 5

History of Multithreading

• CICS and DB2

– Separate TCB („thread‟) for each DB2 Request

– Task is switched to DB2 TCB for DB2 work, DB2 system

code runs on DB2 TCB

– Significant workload shifted to DB2 TCBs, but

measurable overhead from TCB switching

Copyright (c) 2012, The Evans Group, Inc. 6

Open Transaction Environment

• Transaction runs under own TCB

• Introduced in TS 1.3 for Java

• DB2 Support added for TS 2.2

• Supports full OS function

• Allows true Multitasking in CICS

• Pseudo-reentrancy no longer allowed

Copyright (c) 2012, The Evans Group, Inc. 7

OTE and DB2

QR TCB

Task Starts

EXEC CICS

EXEC SQL

Application Code

EXEC SQL

Open TCB

DB2 Code executes

DB2 Code completes

DB2 Code executes

DB2 Code completes

Without Threadsafe

Copyright (c) 2012, The Evans Group, Inc. 8

OTE and DB2

QR TCB

Task Starts

EXEC CICS

EXEC SQL

Task Termination

Open TCB

DB2 Code executes

Application Code

DB2 Code executes

Task completes

With Threadsafe

So, What‟s the Problem

 CICSRGN1

CWA

0001

TASK1

PROG001
MOVE CWA-COUNTER TO

 OUTPUT-FIELD

ADD +1 TO CWA-COUNTER

EXEC CICS WRITE

 OUTPUT-RECORD

0001 + 1 = 0002 stuff0001morestuff

Copyright (c) 2012, The Evans Group, Inc. 9

So, What‟s the Problem

 CICSRGN1

CWA

0001

TASK1

PROG001
MOVE CWA-COUNTER TO

 OUTPUT-FIELD

ADD +1 TO CWA-COUNTER

EXEC CICS WRITE

 OUTPUT-RECORD

0001 + 1 = 0002 stuff0001morestuff

TASK2

PROG001
MOVE CWA-COUNTER TO

 OUTPUT-FIELD

ADD +1 TO CWA-COUNTER

EXEC CICS WRITE

 OUTPUT-RECORD

0002 + 1 = 0003 stuff0001morestuff

Copyright (c) 2012, The Evans Group, Inc. 10

Copyright (c) 2012, The Evans Group, Inc. 11

Definitions

 Define “threadsafe”

1. “A threadsafe program is one that does not modify any

area of storage that can be modified by any other

program at the same time, and does not depend on any

area of shared storage remaining consistent between

machine instructions.”

Copyright (c) 2012, The Evans Group, Inc. 12

Controlling Threadsafe

• At the program level:

 New parameter on Program Definition

• CONCURRENCY=QUASIRENT

 Not Threadsafe

• CONCURRENCY=THREADSAFE

• CONCURRENCY=REQUIRED

• At the region level, new SIT parm:

 FORCEQR=YES/NO

• FORCEQR=YES All programs run non-Threadsafe

• FORCEQR=NO Programs follow

 CONCURRENCY parm on

 program definition

Copyright (c) 2012, The Evans Group, Inc. 13

Identifying Threadsafe Programs

• No automated method of identification

• IBM Tool can help

• Rules of thumb:

– COBOL and PL/1 must be LE

– All programs must be re-entrant

– Aps with no affinities are more likely to be threadsafe

Copyright (c) 2012, The Evans Group, Inc. 14

Identifying Threadsafe Programs

Ensure programs are re-entrant:

• COBOL:

– Compile with RENT

– Link with RENT

• Assembler:

– Code review, possible coding changes required

– Assemble/Link with Rent

• CICS:

– RENTPGM=PROTECT

– Adjust RDSA/ERDSA sizes

– Non-reentrant activity will generate DFHSR0622 followed by
S0C4/ASRA

– Possible conflicts with debuggers

Copyright (c) 2012, The Evans Group, Inc. 15

Identifying Threadsafe Programs

No automated method of identification

CONCURRENCY

 parm is a

promise
 by you, not an order to CICS

Copyright (c) 2012, The Evans Group, Inc. 16

Definitions

 Define “threadsafe”
1. “A threadsafe program is one that does not modify any

area of storage that can be modified by any other program

at the same time, and does not depend on any area of

shared storage remaining consistent between machine

instructions.”

2. “A program defined as CONCURRENCY=THREADSAFE

is one that will be allowed to run on an open TCB.”

Copyright (c) 2012, The Evans Group, Inc. 17

Identifying Threadsafe Programs
Continued...

There is a tool available to help start…..

• Utility DFHEISUP will scan for CICS commands

commonly used in non-threadsafe applications

• Use command table DFHEIDTH

Copyright (c) 2012, The Evans Group, Inc. 18

Identifying Threadsafe Programs
Continued...

There is a tool available to help start…..

• Identifies programs that issue:

– ADDRESS CWA

– EXTRACT EXIT

– GETMAIN SHARED

• Consider adding:

– LOAD PROGRAM () HOLD

Copyright (c) 2012, The Evans Group, Inc. 19

Identifying Threadsafe Programs
Continued...

Programmer must:

• Review each program reported

• Determine if any non-threadsafe activity

• Review all calls/LINKs/XCTLs out of program to see if

addressability to area is passed

– If yes, review called programs to determine if any non-

threadsafe activity

Copyright (c) 2012, The Evans Group, Inc. 20

Making Programs Threadsafe

1) Alter the code to serialize the shared storage access

 A) Use CICS to automatically ensure serialization

 B) Manually ensure serialization

2) Do nothing

After identifying non-Threadsafe code you have

two choices:

Copyright (c) 2012, The Evans Group, Inc. 21

Making Programs Threadsafe continued...

• Leave non-threadsafe programs QUASIRENT

• CICS will switch to QR on LINK or XCTL (But…not for

CALL!)

• Access to shared storage is automatically serialized

If shared storage use is limited to few programs:

Copyright (c) 2012, The Evans Group, Inc. 22

OTE TCB #1 OTE TCB #2

MOVE CWA-REC-COUNT TO

 KEY-UNIQUE-PORTION

ADD +1 TO CWA-REC-COUNT

 EXEC CICS WRITE IMPORTANT-FILE

 RIDFLD(KEY-COMPLETE)

Wait for QR TCB to become available

Making Programs Threadsafe continued...

Our CWA Issue Resolved by Marking Program QUASIRENT

Switch to QR TCB Switch to QR TCB

MOVE CWA-REC-COUNT TO

 KEY-UNIQUE-PORTION

Copyright (c) 2012, The Evans Group, Inc. 23

Making Programs Threadsafe continued...

Advantages:

• No coding changes, so quick implementation

Disadvantages:

• Additional TCB switching overhead

• Maintenance issues

• All programs that access these areas must also remain

QUASIRENT

Copyright (c) 2012, The Evans Group, Inc. 24

Making Programs Threadsafe continued...

• “Wrap” access in CICS ENQ/DEQ

• For Assembler, use CS/CDS

• Move data to a threadsafe but serialized facility:

– CICS Maintained Data Table

– DB2 table

– Coupling Facility

To serialize access to shared storage:

Copyright (c) 2012, The Evans Group, Inc. 25

Making Programs Threadsafe continued...

• OS ENQ

Difficult to ensure that program is on L8 at time of ENQ

• TCLASS

Performance issues from bottlenecks

Serialization techniques to avoid:

Copyright (c) 2012, The Evans Group, Inc. 26

Making Programs Threadsafe continued...

• Limited to 4 or 8 bytes max (16 for 64 bit!)

• Requires Assembler experience or called routine

• Potential for a tight loop.

CS Issues:

Copyright (c) 2012, The Evans Group, Inc. 27

OTE TCB #1 OTE TCB #2

EXEC CICS ENQ RESOURCE()

MOVE CWA-REC-COUNT TO

 KEY-UNIQUE-PORTION

ADD +1 TO CWA-REC-COUNT

EXEC CICS DEQ RESOURCE()

 EXEC CICS WRITE IMPORTANT-FILE

 RIDFLD(KEY-COMPLETE)

Making Programs Threadsafe continued...

Our CWA Issue Resolved by Using ENQ/DEQ

EXEC CICS ENQ RESOURCE()

.

.

.

MOVE CWA-REC-COUNT TO

 KEY-UNIQUE-PORTION

Copyright (c) 2012, The Evans Group, Inc. 28

Making Programs Threadsafe continued...

• CPU Cost

• Potential bottleneck

– Limit ENQ duration by issuing DEQ as soon as possible

– Ensure no possibility of deadly embrace

ENQ Issues:

Copyright (c) 2012, The Evans Group, Inc. 29

OTE TCB #1 OTE TCB #2

EXEC CICS GET COUNTER()

MOVE COUNTER-VALUE TO

 KEY-UNIQUE-PORTION

EXEC CICS WRITE IMPORTANT-FILE

 RIDFLD(KEY-COMPLETE)

Making Programs Threadsafe continued...

Our CWA Issue Resolved by Using Named Counter

EXEC CICS GET COUNTER()

MOVE COUNTER-VALUE TO

 KEY-UNIQUE-PORTION

EXEC CICS WRITE IMPORTANT-FILE

 RIDFLD(KEY-COMPLETE)

Copyright (c) 2012, The Evans Group, Inc. 30

Making Programs Threadsafe continued...

• Requires coupling facility

• GET is not a threadsafe command

Named Counter Issues:

Copyright (c) 2012, The Evans Group, Inc. 31

Making Programs Threadsafe continued...

All programs that access the same shared

storage area in the same CICS region must be

converted before any of these programs are

marked as Threadsafe!

Regardless of which method, remember:

Copyright (c) 2012, The Evans Group, Inc. 32

Accessing The OTE

Three methods of executing on OTE TCB

• Create a dummy OPENAPI TRUE

• Define program as API(OPENAPI)

• Define program as CONCURRENCY(REQUIRED)

Copyright (c) 2012, The Evans Group, Inc. 33

Accessing The OTE

Using a dummy TRUE

For CICS 2.2 and above, write a “dummy” TRUE

• Include OPENAPI on the ENABLE command

• The TRUE program must be defined as Threadsafe

• See the CICS Customization Guide section on Task Related

User Exits

Copyright (c) 2012, The Evans Group, Inc. 34

Accessing The OTE

Functions like DB2 call:

• When task calls OPENAPI true, spun to L8 TCB

• If user program THREADSAFE, task remains on L8 until

forced off

• L8 TCB owned until task termination

• No supported method to tell if task is on L8 or QR

• Review restrictions defined in Customization Guide!

Copyright (c) 2012, The Evans Group, Inc. 35

Accessing The OTE

Application Program

Stub

Task Related User Exit
program

Copyright (c) 2012, The Evans Group, Inc. 36

Accessing The OTE

DMYRMCAL TITLE ' - Sample Dummy stub for TRUE for OPENAPI Processing.

**---*

** Name : DMYRMCAL *

** Purpose : Provide a means to programmatically force a task to *

** be spun to an L8 TCB. *

** This is the callable stub that invokes the dummy *

** TRUE. This stub must be linked into any program *

** wishing to use the TCB spin TRUE. It is called via *

** standard call syntax: *

** CALL DMYRMCAL *

** As no actual work is performed by the TRUE, no parms*

** are used on the call statement.

** *

**---*

**

**

** ------------------------------ Module entry point.

DMYRMCAL CSECT , Define the module environment

DMYRMCAL AMODE 31

DMYRMCAL RMODE 31

 DFHRMCAL TO=DMYTRUE Call the TRUE

 LTORG ,

 END DMYRMCAL

Copyright (c) 2012, The Evans Group, Inc. 37

Accessing The OTE

DMYTRUE TITLE ' - Sample Dummy TRUE for OPENAPI Processing.'

**---*

** Name : DMYTRUE *

** Purpose : Provide a means to programmatically force a task to *

** be spun to an L8 TCB. *

** Returns : Rc in R15 == 0 *

** *

**---*

 DFHUEXIT TYPE=RM Parmlist is passed in R1

**

**

** ------------------------------ Module entry point.

DMYTRUE CSECT , Define the module environment

DMYTRUE AMODE 31

DMYTRUE RMODE 31

 SR 15,15

 BR 14 Return to caller

 LTORG ,

 END DMYTRUE

Copyright (c) 2012, The Evans Group, Inc. 38

QR TCB

Task Starts

Non-threadsafe code

E.C. non-threadsafe

CALL ‘DMYRMCAL’

E.C. non-threadsafe

Task Termination

Open TCB

DMYTRUE executes

Threadsafe user code

E.C. threadsafe

E.C non-threadsafe

Accessing The OTE

Copyright (c) 2012, The Evans Group, Inc. 39

Accessing The OTE

 Returning The Task to QR TCB

• Clone DMYTRUE/DMYRMCAL

• Define DMxTRUE as CONCURRENCY=QUASIRENT

• Enable the new exit as QUASIRENT

Copyright (c) 2012, The Evans Group, Inc. 40

QR TCB

Task Starts

Non-threadsafe code

E.C. non-threadsafe

CALL ‘DMYRMCAL’

Non-threadsafe code

Task Termination

Open TCB

DMYTRUE executes

Threadsafe user code

E.C. threadsafe

CALL ‘DMxRMCAL’

Accessing The OTE

Copyright (c) 2012, The Evans Group, Inc. 41

Accessing The OTE

OPENAPI

 For CICS 3.1 and higher, modify the PROGRAM definition

on the application program to API=OPENAPI

• The program must be Threadsafe

• All application code runs in the OTE environment

• All application code runs on the same TCB instance on

which the program was initialized.

Copyright (c) 2012, The Evans Group, Inc. 42

Accessing The OTE

Forces program to run on L8/9 TCB:

• Program is initialized on L8 TCB if CICS key

• Program is initialized on L9 TCB if USER key

• If program issues non-threadsafe command, task is spun to

QR

• Once command has completed, task is spun to L8/9

• Use INQUIRE_CURRENT_PROGRAM and

INQUIRE_PROGRAM to identify

Copyright (c) 2012, The Evans Group, Inc. 43

QR TCB

Command Starts

Command Completes

Open TCB

Task Starts

E.C. threadsafe

E.C. threadsafe

E.C. non-threadsafe

Task Termination

Accessing The OTE

Copyright (c) 2012, The Evans Group, Inc. 44

Accessing The OTE

 There are performance issues for USER key OPENAPI

programs that also access OPENAPI TRUEs (includes DB2)

• USER key Program is initialized on L9 TCB

• OPENAPI TRUE is initialized on L8 TCB

• When L9 program issues DFHRMCAL to OPENAPI TRUE:

– Task is spun to L8 TCB for duration of TRUE

– Task is returned to L9 following completion of TRUE

• L8 TCB instance held until task termination

Copyright (c) 2012, The Evans Group, Inc. 45

Accessing The OTE

 There are performance issues for USER key OPENAPI

programs that also access OPENAPI TRUEs (includes DB2)

– Review MAXOPENTCB for possible increase

– Review TCBLIMIT for possible increase

– Open TCB “stealing” performance issues

– Potential TCB deadly embrace

Accessing The OTE

CONCURRENCY(REQUIRED)

 For CICS 4.2, modify the PROGRAM definition on the

application program to API(CICSAPI) and

CONCURRENCY(REQUIRED)

• The program must be Threadsafe

• All application code runs in the OTE environment

• All application code runs on the same TCB instance on

which the program was initialized.

• All application code runs on an L8 TCB

Accessing The OTE

Forces program to run on L8 TCB:

• Program is initialized on L8 TCB

• If program issues non-threadsafe command, task is spun to

QR

• Once command has completed, task is spun to L8

• Use INQUIRE_CURRENT_PROGRAM and

INQUIRE_PROGRAM to identify

Copyright (c) 2012, The Evans Group, Inc. 48

QR TCB

Command Starts

Command Completes

Open TCB

Task Starts

E.C. threadsafe

E.C. threadsafe

E.C. non-threadsafe

Task Termination

Accessing The OTE

Accessing The OTE

 There are no additional performance issues for USER key

CONCURRENCY(REQUIRED) programs that also access

OPENAPI TRUEs (includes DB2)

• USER key Program is initialized on L8 TCB

• OPENAPI TRUE is initialized on L8 TCB

• Only one L8 TCB is acquired by the task

– L8 is shared by user program and all OPENAPI TRUEs

• L8 TCB instance held until task termination

Copyright (c) 2012, The Evans Group, Inc. 50

Accessing The OTE

Via Dummy TRUE

Advantages:

• Control application environment programmatically

• CPU savings if large number of non-threadsafe commands

• CPU savings when accessing OTE in USER key

• Non-threadsafe application code may continue to run on QR
TCB

• Available in CICS 2.2 and above.

Copyright (c) 2012, The Evans Group, Inc. 51

Accessing The OTE

Via Dummy TRUE

Disadvantages:

• Requires changes to application code

• Requires process to enable TRUE

• If any non-threadsafe commands, must call TRUE prior to

any OTE activity

• Cannot determine environment programmatically

Copyright (c) 2012, The Evans Group, Inc. 52

Accessing The OTE

Via OPENAPI Parm

Advantages:

• No coding changes required

• All application code guaranteed to run in OTE

• No requirement to enable TRUE

• Can determine environment programmatically

• All user code on same TCB – no issues with “paired” z/OS

macros

Copyright (c) 2012, The Evans Group, Inc. 53

Accessing The OTE

Via OPENAPI Parm

Disadvantages:

• CPU overhead when accessing OPENAPI TRUE in USER

key (DB2, etc.)

• CPU overhead when issuing non-threadsafe EXEC CICS

commands

• All application logic must be threadsafe

• Can increase the number of open TCBs required.

• Overhead if TCB stolen to switch key

Copyright (c) 2012, The Evans Group, Inc. 54

Accessing The OTE

Via CONCURRENCY(REQUIRED) Parm

Advantages:

• No coding changes required

• All application code guaranteed to run in OTE

• No requirement to enable TRUE

• Can determine environment programmatically

• All user code on same TCB – no issues with “paired” z/OS

macros

Copyright (c) 2012, The Evans Group, Inc. 55

Accessing The OTE

Via CONCURRENCY(REQUIRED) Parm

Disadvantages:

• CPU overhead when issuing non-threadsafe EXEC CICS

commands

• All application logic must be threadsafe

Copyright (c) 2012, The Evans Group, Inc. 56

Accessing The OTE

Via CONCURRENCY(REQUIRED)

with

API(OPENAPI)

Disadvantages:

• Can increase the number of open TCBs required.

• Overhead if TCB stolen to switch key

Copyright (c) 2012, The Evans Group, Inc. 57

Accessing The OTE

Via CONCURRENCY(REQUIRED)

with

API(CICSAPI)

Disadvantages:

• Limited to using standard CICS services

• Potential problems if unsupported z/OS services used

Copyright (c) 2012, The Evans Group, Inc. 58

Accessing The OTE

One restriction in OPENAPI programs:

• Do not attempt to initialize batch LE environment

under CICS OPENAPI.

Copyright (c) 2012, The Evans Group, Inc. 59

Why Bother?

Run tasks on an open TCB to:

• Reduce QR CPU constraint by moving tasks to other

processors

• Use z/OS functionality forbidden on QR TCB

– Activity generating z/OS waits

• I/O

• ENQ/DEQ

• Segregate troublesome transactions

Implications of New TCB Types

• Multiple TCB types

• Application code running in OTE

– Application programs fighting for CPU

– Poor coding only affects program user, not region

– Resource hogs build up

• CICS system code running in multiple TCBs

• IBM converting sub-products to use OTE

– MQ

– Sockets

– XML parser

Multiple TCB Structure

CICS/QR

Task1

z/OS

Classic CICS

CPU1 CPU2 CPU3 CPU4

CICS/L8

DB2

z/OS

Sockets

MQ

CICS/J8

Java

CICS/X8

C++

XPLINK

Multiple TCB Structure

CICS/QR

Task1

z/OS

Modern CICS

CPU1 CPU2 CPU3 CPU4

CICS/L8

DB2

CICS/L8

CICS

Sockets

CICS/L8

CICS

XML

Reducing QR CPU Constraint

QR TCB is limited to the speed of one processor

• When QR hits CPU limit, region stalls

• Classic fix = Clone Region to offload CPU

• Modern fix = Exploit OTE to offload CPU

Reducing QR CPU Blocking

QR TCB is single threaded

• Current task “owns” QR until next EXEC CICS
(*)

• Heavy CPU routines don‟t release QR

• Region appears to lock up

• While task runs, CICS workload backs up

• VSAM, DB2 I/O Completes

• New tasks ready for dispatch

•

Reducing QR CPU Blocking

OTE is Multi-Threaded

• OTE task “owns” his TCB until next EXEC CICS
(*)

• QR is available for other workload

• No region hold-up

• No extended response times

• Other workload unaffected

• Response time improves

Reducing QR CPU Constraint

Warning: Consider LPAR CPU Implications when converting

a QR constrained region to exploit open TCBs:

• Reduce QR constraint by moving tasks to other processors

• In MP environment, total CPU will increase until:

1. CICS CPU requirements satisfied

2. Box CPU capacity met

• Can negatively impact z/OS workload CICS depends on

CICS/L8

DB2

CICS/L8

DB2

CICS/L8

DB2 CICS/L8

DB2

CICS/L8

DB2 CICS/J8

Java

CICS/X8

C++

XPLINK

Multiple TCB Structure

CICS/QR

Task1

z/OS

Modern CICS

With

Threadsafe

Applications

CPU1 CPU2 CPU3 CPU4

CICS/L8

Task2

CICS/L8

Task3

CICS/L8

CICS

XML

Copyright (c) 2012, The Evans Group, Inc. 68

Using Forbidden Functionality

Use almost any z/OS function:

• Communicate with operator via WTOR

• Make use of flexibility of STORAGE OBTAIN/RELEASE

• Issue I/O without CICS file control

• Use z/OS ENQ/DEQ to synchronize with batch jobs

• ……….

Copyright (c) 2012, The Evans Group, Inc. 69

Using Forbidden Functionality

Transaction initiated communication with operator via
WTOR:

• OTE TCB waits, not entire region

• Synchronous waits on external events/requests

• CICS command input from master console

• Enable use of standard auto operation facility

Disadvantages:

• Task shows as “running”

• No way to track WTOR back to task

Copyright (c) 2012, The Evans Group, Inc. 70

Using Forbidden Functionality

Use of z/OS STORAGE OBTAIN/RELEASE

• Powerful options not available from EXEC CICS GETMAIN

• Storage acquired outside of CICS subpools

• More efficient than CICS GETMAIN

Disadvantages:

• Storage invisible to CICS monitor

• No automatic cleanup at task termination

• Storage not displayed in dump, trace, etc.

• Problems with OS GETMAIN and USER key OPENAPI tasks

Copyright (c) 2012, The Evans Group, Inc. 71

Using Forbidden Functionality

Error on STORAGE OBTAIN causes ASRB, not region failure:

 DFHAP0001 CICSD225 An abend (code 878/AKEB) has

occurred at offset X'FFFFFFFF' in module TEST.

00057 L9002 AP 00E1 EIP EXIT LOAD

00057 L9002 AP 1942 APLI *EXC* Abend

00057 L9002 AP 0791 SRP *EXC* MVS_ABEND

00057 L9002 DS 0010 DSBR ENTRY INQUIRE_TASK

00057 L9002 DS 0011 DSBR EXIT INQUIRE_TASK/OK

00057 QR PG 0500 PGIS ENTRY INQUIRE_CURRENT_PROGRAM

00057 QR PG 0501 PGIS EXIT INQUIRE_CURRENT_PROGRAM

00057 QR AP 0782 SRP *EXC* ABEND_ASRB

TCB is marked as unusable:

DSTCB QR KE 0502 KEDS ENTRY DETACH_TERMINATED_OWN_TCBS

DSTCB QR KE 0503 KEDS EXIT DETACH_TERMINATED_OWN_TCBS/OK

Copyright (c) 2012, The Evans Group, Inc. 72

Using Forbidden Functionality

Issue I/O without CICS file control:

• Bypass CICS file control

• “Batch” transactions segregated from normal processing

Disadvantages:

• Cannot issue OPEN/CLOSE in COBOL program

• No backout or forward recovery

• Activity not in dump, trace, etc.

Copyright (c) 2012, The Evans Group, Inc. 73

Using Forbidden Functionality

Reminder: the OTE only supports CICS LE service routines:

• COBOL display becomes a WRITEQ TD (not threadsafe!)

• COBOL dynamic call modified for CICS

• OPEN/CLOSE unavailable

• Storage obtained via EXEC CICS GETMAIN

Copyright (c) 2012, The Evans Group, Inc. 74

Segregating Transactions

OTE provides some insulation from difficult transactions

• CPU intensive tasks don‟t own QR TCB

• QR available for CEMT, etc.

Copyright (c) 2012, The Evans Group, Inc. 75

OTE Performance Considerations

 There are several performance issues that are unique to the

OTE:

• Non-Threadsafe EXEC CICS commands

• Non-Threadsafe CICS Global User Exits

• Multi-TCB issues with OPENAPI programs

Copyright (c) 2012, The Evans Group, Inc. 76

Definitions

 Define “threadsafe”
1. “A threadsafe program is one that does not modify any

area of storage that can be modified by any other

program at the same time, and does not depend on any

area of shared storage remaining consistent between

machine instructions.”

2. “A program defined as

CONCURRENCY=THREADSAFE is one that will be

allowed to run on an open TCB.”

3. “A threadsafe CICS command is one that is allowed to

run under an open TCB. A non-threadsafe command is

one that is not allowed to run under an open TCB”

Copyright (c) 2012, The Evans Group, Inc. 77

Non-Threadsafe CICS Commands

• Many commands not Threadsafe

• Use of non-Threadsafe commands is fully supported

by CICS

• CICS detects non-threadsafe command and switches

task to QR TCB

• Task‟s TCB status following command depends on

API definition

• Potential performance issue for API=OPENAPI

Copyright (c) 2012, The Evans Group, Inc. 78

Non-Threadsafe CICS Commands

 A list of the commands that are threadsafe can be found in

the CICS Application Programming Reference Manual,

under CICS threadsafe commands in the API.

 A list of the threadsafe SPI commands can be found in the

CICS System Programming Reference Manual, in Appendix

D, Threadsafe SPI commands

Copyright (c) 2012, The Evans Group, Inc. 79

Non-Threadsafe CICS Exits

• Significant area of concern

• Task switched to QR for duration of exit, then back to
Open TCB

• Infrequently referenced exits less of a problem

• Frequently referenced exits (eg., XEIIN) are a major
performance problem

• XRMIIN/OUT and Dynamic Plan Selection most
worrisome

• Worst case: significant (20%++?) increase in CPU
utilization.

• Can cause CPU impact even if FORCEQR=YES

Copyright (c) 2012, The Evans Group, Inc. 80

Non-Threadsafe CICS Exits

• Use DFH0STAT to identify exits in use

– Select DB2, User Exit and Global User Exit options

– Identifies all active exits by program name,

CONCURRENCY option, exit point, and GWA usage

– Shows Dynamic Plan exits

• Identify vendor exits and contact vendor

– Do not mark threadsafe without vendor OK

– Do not convert with heavily used QUASIRENT exits

• Review homegrown exit code to ensure threadsafe

Copyright (c) 2012, The Evans Group, Inc. 81

Using IBM Utility DFH$MOLS

• IBM supplied utility to analyze SMF 110 records

• Provides detailed report

– One page / task

– Storage utilization

– CPU utilization

• By TCB type

– Response time

• Can use pre-generated MCT A$

• Activate monitoring with CEMT

– SET MON ON PER

• Flush buffers with CEMT

– SET MON ON NOP

Copyright (c) 2012, The Evans Group, Inc. 82

Using IBM Utility DFH$MOLS

//**

//* Step 1: Unload data from the SMF data sets

//**

//SMFDUMP EXEC PGM=IFASMFDP

//INDD1 DD DSN=SYS1.D002.MAN11,DISP=SHR,AMP=('BUFSP=65536')

//INDD2 DD DSN=SYS1.D002.MAN12,DISP=SHR

//INDD3 DD DSN=SYS1.D002.MAN13,DISP=SHR

//OUTDD1 DD DSN=?????.SMF.DATA1,DISP=(NEW,CATLG),

// SPACE=(CYL,(50,10)),UNIT=SYSDA

//SYSPRINT DD SYSOUT=A

//SYSIN DD *

 INDD(INDD1,OPTIONS(DUMP))

 INDD(INDD2,OPTIONS(DUMP))

 INDD(INDD3,OPTIONS(DUMP))

 OUTDD(OUTDD1,TYPE(110(1)))

Use IFASMFDP to extract the 110 records
INDDx points to your

SMF datasets. You can
use either active

datasets or archives

OUTDD1 points
to the output
dataset that

holds the
extracted 110

records

Use an INDD control
statement to describe
each SMF file used as

input.

The OUTDD control
statement describes your
output file and the record

types to be extracted. We’re
using 110 subtype 1 records

Copyright (c) 2012, The Evans Group, Inc. 83

Using IBM Utility DFH$MOLS

//PRNT EXEC PGM=DFH$MOLS

//STEPLIB DD DSN=SYS2.CICSTS31.CICS.SDFHLOAD,DISP=SHR

//INPUT DD DSN=?????.SMF.DATA1,DISP=OLD

//SORTWK01 DD SPACE=(CYL,(5,1)),UNIT=SYSDA

//SORTWK02 DD SPACE=(CYL,(5,1)),UNIT=SYSDA

//SORTWK03 DD SPACE=(CYL,(5,1)),UNIT=SYSDA

//SORTWK04 DD SPACE=(CYL,(5,1)),UNIT=SYSDA

//SORTWK05 DD SPACE=(CYL,(5,1)),UNIT=SYSDA

//SORTDIAG DD SYSOUT=A

//SYSOUT DD SYSOUT=A

//SYSPRINT DD SYSOUT=A

//SYSABEND DD SYSOUT=A

//SYSUDUMP DD SYSOUT=A

//SYSIN DD *

SELECT TRANID=trn1,trn2

DATE START=03/23/2006

/*

Use DFH$MOLS to format the extracted records

INPUT DD points to
OUTDD dataset from

previous step.

The report is
written to
SYSPRINT Use the SELECT

TRANID cards to limit
your report.

Use the DATE START card to
limit your report

Copyright (c) 2012, The Evans Group, Inc. 84

Using IBM Utility DFH$MOLS
----------FIELD-NAME-------------------------UNINTERPRETED-------------------------------INTERPRETED---------------

 DFHTASK C001 TRAN C5E2C3F1 ESC1

 DFHTERM C002 TERM C3D7F8F4 CP84

 DFHCICS C089 USERID C3C9C3E2 C4F2F2F4 CICSD224

 DFHTASK C004 TTYPE E3D60000 TO

 DFHCICS T005 START BED82B7ADC91D761 2006/05/23 10:53:46.968349

 DFHCICS T006 STOP BED82B7ADD3A7B40 2006/05/23 10:53:46.971047

 DFHTASK P031 TRANNUM 0000513C 513

 DFHTASK A109 TRANPRI 00000001 1

 ...

 DFHTERM C111 LUNAME E2F0F1E3 C3D7F8F4 S01TCP84

 DFHPROG C071 PGMNAME C5E2D7E4 E2C5C3F1 ESPUSEC1

 DFHTASK C097 NETUOWPX C2C8C4D5 C5E34BE2 F0F1E3C3 D7F8F400 00000000 BHDNET.S01TCP84

 DFHTASK C098 NETUOWSX D82B7ADC9D100001

 DFHCICS A131 PERRECNT 00000001 1

 DFHTASK T132 RMUOWID BED82B7ADC9D1021 2006/05/23 10:53:46.968529

 DFHCICS C167 SRVCLSNM C3C9C3E2 40404040 CICS

 ...

 DFHTASK C163 FCTYNAME C3D7F8F4 CP84

 DFHTASK A164 TRANFLAG 4000800002000000

 DFHTERM A165 TERMINFO 01000191

 ...

 DFHTASK C082 TRNGRPID 180FC2C8C4D5C5E3...

 DFHTERM C197 NETID C2C8C4D5 C5E34040 BHDNET

 DFHTERM C198 RLUNAME E2F0F1E3 C3D7F8F4 S01TCP84

Copyright (c) 2012, The Evans Group, Inc. 85

Non-Threadsafe CICS Exits

DFH$MOLS report of non-threadsafe program:

DB2REQCT 14879

USRCPUT 00:00:01.11961 29763

SUSPTIME 00:00:01.79190 29763

DISPWTT 00:00:01.69950 29762

QRDISPT 00:00:00.37627 14882

QRCPUT 00:00:00.01568 14882

KY8DISPT 00:00:03.67361 14880

KY8CPUT 00:00:01.10212 14880

L8CPUT 00:00:01.10212 14880

RMITIME 00:00:03.37489 14880

Copyright (c) 2012, The Evans Group, Inc. 86

Non-Threadsafe CICS Exits

DFH$MOLS report of non-threadsafe EXIT:

DB2REQCT 14879

USRCPUT 00:00:01.15467 59519

SUSPTIME 00:00:02.71036 59519

DISPWTT 00:00:02.41534 59518

QRDISPT 00:00:00.63364 29760

QRCPUT 00:00:00.01456 29760

KY8DISPT 00:00:03.35622 29759

KY8CPUT 00:00:01.14011 29759

L8CPUT 00:00:01.14011 29759

RMITIME 00:00:02.92852 14880

Copyright (c) 2012, The Evans Group, Inc. 87

Minimizing CPU Overhead

 CPU overhead is incurred when a non-Threadsafe
command is issued while the task is running on an Open
TCB. Overhead is zero when no non-Threadsafe
commands are issued while the task is running on an Open
TCB. Overhead is minimized when non-Threadsafe
commands can be clustered on the QR

 EXEC SQL OPEN CURSOR

 PERFORM UNTIL ...

 EXEC SQL FETCH….

 EXEC CICS WRITEQ TD

 END-PERFORM

88

Minimizing CPU Overhead

Once the command has been identified…..

• Replace it

Replace Transient Data with CICS TempStor?

• Relocate it

Move the command outside of the SQL loop?

Copyright (c) 2012, The Evans Group, Inc.

89

Minimizing CPU Overhead

 Replace Transient Data with CICS Temporary Storage:

 EXEC SQL OPEN CURSOR

 PERFORM UNTIL ...

 EXEC SQL FETCH….

 EXEC CICS WRITEQ TS

 END-PERFORM

Copyright (c) 2012, The Evans Group, Inc.

90

Minimizing CPU Overhead

 DFH$MOLS of modified program running Threadsafe
in test:

 EXEC CICS WRITEQ TD replaced with WRITEQ TS

DB2REQCT 00004E20 20000

USRDISPT 00066339000001E3 00:00:06.69787 483

USRCPUT 0003A4D3000001E3 00:00:03.82084 483

SUSPTIME 00002570000001E3 00:00:00.15334 483

DISPWTT 000003CE000001E2 00:00:00.01558 482

QRDISPT 0000065400000141 00:00:00.02592 321

QRCPUT 000002B100000141 00:00:00.01102 321

KY8DISPT 000659D3000000A1 00:00:06.65937 161

KY8CPUT 0003A1F7000000A1 00:00:03.80913 161

L8CPUT 0003A1F7000000A1 00:00:03.80913 161

QRMODDLY 0000032D00000140 00:00:00.01300 320

DSCHMDLY 0000033C00000144 00:00:00.01324 324

Copyright (c) 2012, The Evans Group, Inc.

91

Minimizing CPU Overhead

QR TCB

Task Starts

FETCH

Open TCB

DB2 Code executes

WRITEQ TS

FETCH

WRITEQ TS

Copyright (c) 2012, The Evans Group, Inc.

92

Minimizing CPU Overhead

 Relocate Transient Data Writes:

 EXEC SQL OPEN CURSOR

 PERFORM UNTIL ...

 PERFORM VARYING…

 EXEC SQL FETCH….

 MOVE RESULTS TO WS-RESULTS()

 END-PERFORM

 PERFORM VARYING…

 EXEC CICS WRITEQ TD FROM(WS-RESULTS())

 END-PERFORM

 END-PERFORM

Copyright (c) 2012, The Evans Group, Inc.

93

Minimizing CPU Overhead

DFH$MOLS of modified program running Threadsafe in test

Results of 10 SQL FETCH placed in Working Storage, then
issue 10 EXEC CICS WRITEQ TD at once

DB2REQCT 00004E20 20000

USRDISPT 00066339000001E3 00:00:06.69787 2612

USRCPUT 0003A4D3000001E3 00:00:03.82084 2612

SUSPTIME 00002570000001E3 00:00:00.15334 2612

DISPWTT 000003CE000001E2 00:00:00.01558 2611

QRDISPT 0000065400000141 00:00:00.02592 1052

QRCPUT 000002B100000141 00:00:00.01102 1052

KY8DISPT 000659D3000000A1 00:00:06.65937 526

KY8CPUT 0003A1F7000000A1 00:00:03.80913 526

L8CPUT 0003A1F7000000A1 00:00:03.80913 526

QRMODDLY 0000032D00000140 00:00:00.01300 1050

DSCHMDLY 0000033C00000144 00:00:00.01324 1055

Copyright (c) 2012, The Evans Group, Inc.

Copyright (c) 2012, The Evans Group, Inc. 94

OTE and TRUEs – Scenarios for OPENAPI Program

L9 TCB

Task Starts

EXEC SQL

E.C.WRITEQ TD

MQ PUT

E.C. RETURN

L8 TCB

DB2 code executes

DB2 code complete

MQ Series With OPENAPI program in USER key

QR TCB

WRITEQ TD starts

WRITEQ TD ends

Task termination

MQ TCB

MQ code executes

MQ code complete

Copyright (c) 2012, The Evans Group, Inc. 95

OTE and TRUEs – Scenarios for OPENAPI TRUE

L9 TCB

Unused

L8 TCB

DMYTRUE executes

Threadsafe code

EXEC SQL

E.C. WRITEQ TD

MQ Series With Program in USER key and Dummy TRUE

QR TCB

Task Starts

CALL ‘DMYRMCAL’

WRITEQ TD starts

WRITEQ TD ends

MQ PUT

Task termination

MQ TCB

MQ code executes

MQ code complete

Copyright (c) 2012, The Evans Group, Inc. 96

Minimize OTE Overhead: Dummy TRUE

 CPU overhead is minimized when no non-Threadsafe

commands are issued between the DMYRMCAL and the

end of OTE user code

 PERFORM UNTIL ...

 CALL „DMYRMCAL‟

 [ote user code]

 EXEC CICS WRITEQ TD

 END-PERFORM

Copyright (c) 2012, The Evans Group, Inc. 97

Minimize OTE Overhead: Dummy TRUE

QR TCB

Task Starts

CALL ‘DMYRMCAL’

CALL ‘DMYRMCAL’

Open TCB

OTE user code

WRITEQ TD

OTE user code

WRITEQ TD

Copyright (c) 2012, The Evans Group, Inc. 98

Minimize OTE Overhead: OPENAPI Program

 CPU overhead is minimized when:

1. No non-Threadsafe commands are issued by the

program

2. If USER key, no DB2 or OPENAPI TRUE calls

issued by the program

Copyright (c) 2012, The Evans Group, Inc. 99

Minimize OTE Overhead: OPENAPI Program

Relocation Ineffective for OPENAPI!

QR TCB

Open TCB

Task Starts

OTE user code

WRITEQ TS

Inner Loop

WRITEQ TD

WRITEQ TD

WRITEQ TD

Outer Loop

Copyright (c) 2012, The Evans Group, Inc. 100

Minimize OTE Overhead: REQUIRED Program
with API(CICSAPI)

 CPU overhead is minimized when:

1. No non-Threadsafe commands are issued by the

program

Copyright (c) 2012, The Evans Group, Inc. 101

Minimize OTE Overhead: REQUIRED Program

Relocation Ineffective for REQUIRED!

QR TCB

Open TCB

Task Starts

OTE user code

WRITEQ TS

Inner Loop

WRITEQ TD

WRITEQ TD

WRITEQ TD

Outer Loop

Copyright (c) 2012, The Evans Group, Inc. 102

Reducing CPU Overhead

Note:

Prior to CICS 4.2, IRC is not threadsafe. This means that

Threadsafe commands that are function shipped will be

treated as if they are non-threadsafe.

CICS 4.2 IPIC connections support threadsafe mirror

transactions

Copyright (c) 2012, The Evans Group, Inc. 103

Ensuring Threadsafe Coding When Creating New

Programs

• Ensure threadsafe coding standards are met

• Minimize number of TCB switches

Design is critical

Copyright (c) 2012, The Evans Group, Inc. 104

Ensuring Threadsafe Coding When Creating New

Programs

• Eliminate updates to shared storage areas:

– CWA

– GWA

– GETMAIN(SHARED)

– OS GETMAIN

– LOAD HOLD

• Require use of RENT on link-edit step

• Use RENTPGM=PROTECT in CICS

Ensure Threadsafe Coding Standards

Copyright (c) 2012, The Evans Group, Inc. 105

Ensuring Threadsafe Coding When Creating New

Programs

• Maximum performance

• Use only Threadsafe commands

• Design program flow to cluster OTE usage

• Issue non-Threadsafe commands before or after OTE

activity complete

Minimize number of TCB switches

Copyright (c) 2012, The Evans Group, Inc. 106

Diagnosing Threadsafe Problems

• Threadsafe problems most likely to occur during peak

time.

• Stress testing more likely to bring out threadsafe

problems.

• Best way to ensure success is strong application

knowledge.

• Be thorough in your review.

No way to prove threadsafe!

Copyright (c) 2012, The Evans Group, Inc. 107

Diagnosing Threadsafe Problems

• Errors based on probability

• Difficult to force simultaneous execution of code path

• Use stress testing

– Set MAXTASK high

– Set DSALIMITs high

– Set SYSDUMPING on!

– Use driver program to issue large number of STARTs

How to tell when Testing is Complete?

Copyright (c) 2012, The Evans Group, Inc. 108

Diagnosing Threadsafe Problems

• Difficult to identify

• “Impossible” behavior likely to be threadsafe issue

• Use CICS auxtrace

• Use homegrown application trace

• CICS system dump

Unpredictable Results Means Just That!

Copyright (c) 2012, The Evans Group, Inc. 109

Diagnosing Threadsafe Problems

• Macros such as ENQ and DEQ must run on same TCB

• Intervening user code can force TCB switch

• Second macro in pair fails

• Macros include:

– ENQ/DEQ

– ATTACH/DETACH

Paired MVS macros that need same TCB

Copyright (c) 2012, The Evans Group, Inc. 110

Diagnosing Threadsafe Problems

COBPGM

 CALL „ASMPGM1‟

USING PARM-LIST.

A Statically Called Assembler Program Isn’t Threadsafe

ASMPGM1 CSECT

 LA R13,SAVEAREA

 STM R14,R12,12(R13)

 .

 .

 LM R14,R12,12(R13)

 BR R14

 .

 .

SAVEAREA DS 18F

Copyright (c) 2012, The Evans Group, Inc. 111

Diagnosing Threadsafe Problems

• Because ASMPGM1 issues no CICS commands, the code

runs normally in a non-threadsafe environment

• CICS is not notified for calls

• Simultaneous access to SAVEAREA results in overlay

• Probable S0C4

• Identifiable in test via RENTPGM=PROTECT

All Called Routines Run on TCB of the Caller

Copyright (c) 2012, The Evans Group, Inc. 112

Diagnosing Threadsafe Problems

Possible solutions:

1. Convert ASMPGM1 to Command Level

2. Alter COBPGM to pass address of RSA

3. Leave COBPGM non-Threadsafe

4. Convert ASMPGM1 to LE enabled Assembler

All Called Routines Run on TCB of the Caller

Copyright (c) 2012, The Evans Group, Inc. 113

Threadsafe File Control

Threadsafe VSAM RLS available with CICS 3.2

Threadsafe local VSAM shipped in CICS 3.2 as disabled

New SIT parm:

 FCQRONLY=[YES | NO]

• FCQRONLY=YES forces all file control to run on QR TCB

• FCQRONLY=NO allows threadsafe file control requests to

run on L8/L9 TCB

Remote VSAM on non-IPIC connections remains non-

threadsafe

Copyright (c) 2012, The Evans Group, Inc. 114

Threadsafe File Control

Enable local VSAM threadsafe in CICS 3.2 with PTF

UK37688

VSAM APARs OA20352 and OA24071 are required

 NOTE: UK37688 changes the default on FCQRONLY

from NO to YES. If you are running VSAM RLS

threadsafe, and take the default on FCQRONLY,

applying UK376688 will disable RLS threadsafe.

Copyright (c) 2012, The Evans Group, Inc. 115

Futures

 “It is the intention of IBM for future releases of CICS

Transaction Server for z/OS to continue to enhance

OTE support to enable the ongoing migration of CICS

and application code from the QR to open TCBs.”

Threadsafe considerations for CICS

Copyright (c) 2012, The Evans Group, Inc. 116

Futures

• IBM committed to making more commands threadsafe

• IBM Announces additional threadsafe commands in

every release since TS 2.2

• CICS 3.2 introduces threadsafe file control (local)

Note, CICS TS 3.2 was shipped with threadsafe VSAM

disabled. Apply PK45354 to activate it

• CICS 4.2 introduced threadsafe DBCTL for DLI

• Conversion to OPENAPI TRUEs for CICS Sockets, MQ

• Internal use of OPENAPI for CPU intensive processes

Copyright (c) 2012, The Evans Group, Inc. 117

Recommendations

• Consider Threadsafe implications now.

• Heavy CPU users exploit multiprocessors

• Don‟t forget purchased packages

• Beware of COBOL calls (dynamic or static)

Copyright (c) 2012, The Evans Group, Inc. 118

Recommendations

• Convert XRMIIN/OUT and Dynamic Plan Selection exits

before migrating to a threadsafe capable CICS release

• Convert all frequently used exit programs to threadsafe

before converting programs

• Verify that required maintenance is on CICS and vendor

products before converting programs to threadsafe

• Review IBM Redbook “Threadsafe Considerations for

CICS”

